# Example 7 - Chapter 8 Class 12 Application of Integrals (Term 2)

Last updated at Dec. 12, 2019 by Teachoo

Last updated at Dec. 12, 2019 by Teachoo

Transcript

Example 7 Find the area lying above x-axis and included between the circle ๐ฅ2 +๐ฆ2=8๐ฅ and inside of the parabola ๐ฆ2=4๐ฅ Since equation of circle is of form (๐ฅโ๐)^2+(๐ฆโ๐)^2=๐^2 , We convert our equation ๐ฅ^2+๐ฆ^2=8๐ฅ ๐ฅ^2โ8๐ฅ+๐ฆ^2=0 ๐ฅ^2โ2 ร4 ร๐ฅ+๐ฆ^2=0 ๐ฅ^2โ2 ร4 ร๐ฅ+4^2โ4^2+๐ฆ^2=0 (๐ฅโ4)^2+๐ฆ^2=4^2 So, Circle has center (4 , 0) & Radius =4 We need to find Area OPQC Point P is point of intersection of circle and parabola Finding Point P Equation of circle is ๐ฅ^2+๐ฆ^2=8๐ฅ Putting ๐ฆ^2=4๐ฅ ๐ฅ^2+4๐ฅ=8๐ฅ ๐ฅ^2=8๐ฅโ4๐ฅ ๐ฅ^2=4๐ฅ ๐ฅ^2โ4๐ฅ=0 ๐ฅ(๐ฅโ4)=0 So, ๐ฅ=0 & ๐ฅ=4 For ๐ = 0 ๐ฆ^2=4๐ฅ=4 ร 0=0 ๐ฆ=0 So, point is (0, 0) For ๐ = 4 ๐ฆ^2=4๐ฅ=4 ร4=4^2 ๐ฆ=4 So, point is (4, 4) So, ๐ฅ=0 & ๐ฅ=4 Since point P is in 1st quadrant, Coordinates of P = (4, 4) Note that ๐ฅ-coordinate same as that of center (4, 0) โด P lies above point C So, we need to change the figure New figure Area Required Area Required = Area OPC + Area PCQ Area OPC Area OPC = โซ_0^4โใ๐ฆ ๐๐ฅใ Here, y โ Equation of parabola y2 = 4x y = ยฑ โ4๐ฅ y = ยฑ 2โ๐ฅ Since OPC is in 1st quadrant, value of y is positive y = 2โ๐ฅ โด Area OPC = โซ_0^4โใ2โ๐ฅใ ๐๐ฅ = 2 โซ_0^4โ๐ฅ^(1/2) ๐๐ฅ = 2 [๐ฅ^(1/2 + 1)/(1/2 + 1)]_0^4 = 2 [๐ฅ^(3/2)/(3/2)]_0^4 = 2 ร 2/3 [(4)^(3/2)โ(0)^(3/2) ] = 4/3 [8โ0] = 32/3 Area PCQ Area PCQ = โซ_4^8โใ๐ฆ ๐๐ฅใ Here, y โ Equation of circle x2 + y2 = 8x y2 = 8x โ x2 y = ยฑ โ(8๐ฅโ๐ฅ^2 ) Since PCQ is in 1st quadrant, value of y is positive y = โ(8๐ฅโ๐ฅ^2 ) โด Area PCQ = โซ_4^8โโ(8๐ฅโ๐ฅ^2 ) ๐๐ฅ = โซ_4^8โโ(โ(๐ฅ^2โ8๐ฅ)) ๐๐ฅ = โซ_4^8โโ(โ(๐ฅ^2โ8๐ฅ+16โ16)) ๐๐ฅ = โซ_4^8โโ(โ(๐ฅ^2โ8๐ฅ+16)โ(โ16)) ๐๐ฅ = โซ_4^8โโ(16โ(๐ฅ^2โ8๐ฅ+16)) ๐๐ฅ = โซ_4^8โโ(16โ(๐ฅโ4)^2 ) ๐๐ฅ = โซ_4^8โโ(4^2โ(๐ฅโ4)^2 ) ๐๐ฅ = [((๐ฅ โ 4))/2 โ(4^2โใ(๐ฅโ4)ใ^2 )+4^2/2 ใ๐ ๐๐ใ^(โ1)โกใ ((๐ฅ โ 4))/4ใ " " ]_4^8 It is of form โ(๐^2โ๐ฅ^2 ) ๐๐ฅ=๐ฅ/2 โ(๐^2โ๐ฅ^2 )+๐^2/2 ใ๐ ๐๐ใ^(โ1)โกใ ๐ฅ/๐+๐ใ Here, a = 4, x = x โ 4 = [((๐ฅ โ 4))/2 โ(16โ(๐ฅ^2โ8๐ฅ+4^2))+16/2 ใ๐ ๐๐ใ^(โ1)โกใ ((๐ฅ โ 4))/4ใ " " ]_4^8 = [((๐ฅ โ 4))/2 โ(โ(๐ฅ^2โ8๐ฅ))+8 ใ๐ ๐๐ใ^(โ1)โกใ ((๐ฅ โ 4))/4ใ " " ]_4^8 = [((8 โ 4))/2 โ(โ(8^2โ8(8)))+8 ใ๐ ๐๐ใ^(โ1)โกใ ((8 โ 4))/4ใ ] โ [((4 โ 4))/2 โ(โ(4^2โ8(4)))+8 ใ๐ ๐๐ใ^(โ1)โกใ ((4 โ 4))/4ใ ] = [4/2 โ0+8 ใ๐ ๐๐ใ^(โ1)โกใ 1ใ ] โ [0+8 ใ๐ ๐๐ใ^(โ1)โกใ 0ใ ] = 8 ใ๐ ๐๐ใ^(โ1)โกใ 1ใ โ 8 ใ๐ ๐๐ใ^(โ1)โกใ 0ใ = 8(๐/2) โ 8 ร 0 = 4๐ As ใ๐ ๐๐ใ^(โ1)โกใ 1ใ = ๐/2 & ใ๐ ๐๐ใ^(โ1)โกใ 0ใ = 0 Thus, Area Required = Area OPC + Area PCQ = 32/3 + 4๐ = ๐/๐ (8 + 3๐ ) square units

Examples

Example 1

Example 2 Important

Example 3

Example 4

Example 5 Important

Example 6 Important Deleted for CBSE Board 2022 Exams

Example 7 Important Deleted for CBSE Board 2022 Exams You are here

Example 8 Important Deleted for CBSE Board 2022 Exams

Example 9 Deleted for CBSE Board 2022 Exams

Example 10 Important Deleted for CBSE Board 2022 Exams

Example 11

Example 12

Example 13 Important

Example 14 Important Deleted for CBSE Board 2022 Exams

Example 15 Important

Chapter 8 Class 12 Application of Integrals (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.